

April 2nd, 2002

End-to-end Prototype Report

Laboratory #08
Revision 2

Prepared by: Abraham C. Lleva & Hao Liang

Jeah Control Systems
CS 340, Group 25

Table of Contents

1 Preface...2

2 Prototype Goals..2

2.1 System Goal..2

2.2 Onboard Software Goals..2

3 Schedule..3

3.1 Detailed Milestone Schedule..3

4 Testing Report..3

4.1 Post-Development Testing Report..4

5 Source Code...4

5.1 Main.cpp..4

5.2 Makefile...5

5.3 RModule.h...7

5.4 RModule.cpp...8

5.5 RobotModule.h..9

5.6 RobotModule.cpp...13

6 Approval Sheet...16

7 Pledge Sheet..17

7/29/2002 CONTROL SYSTEM SPECIFICATION

2 Preface
Jeah Control Systems (Group 25) and Serendipitous Solutions (Group 26) made a combined effort to
develop and demonstrate an intermediate prototype for the mobile robot system. The purpose of this
document is to record the goals, schedule, testing performance, and actual implementation used for the
prototype.

3 Prototype Goals
Both groups were required to modularize and develop their parts of the prototype system separately.
Sharing the same communication protocol and the utilization of object-oriented design, the general
strategy would be to reconcile the input/output parameters between the system modules and after
implementation, bridge the two pieces through these parameters.

After both pieces were completed, they were to be immediately brought together and run through an
integration test. Success would be achieved once the two halves of the prototype were working in
tandem.

Once the nature of this joint development plan was agreed upon by both parties such that both
companies would require the least amount of interaction with each other during the
design/implementation process, we separated into our original groups. The following sections outline
first the overall system goal for the project and then the basic goals/milestones set by our group for our
half of the prototype (the onboard software mechanism).

3.1 System Goal

The robot onboard software would first be required to connect to both Group 26’s interface system as well
as the actual robot. Then, integration with Group 26’s interface was expected to provide a user the ability to
perform the following functions.

 Connect to robot

 Move forward

 Stop

 Turn Camera

 Simultaneous control of both robot and camera

3.2 Onboard Software Goals

The following table describes the goals we set for our development process of the onboard software as well
as our reasons for doing so.

Goal Explanation

Create a Socket
It is necessary to create a socket successfully so that
communication between the onboard software and
the control station can be established in the future.

Create a Listener An intermediate goal that aims at giving the server
ability to receive data sent from the control station.

Map Control Station Interface After creating a socket and a listener, the buttons on

LABORATORY 08 2 JEAH CONTROL SYSTEMS

7/29/2002 CONTROL SYSTEM SPECIFICATION

Buttons to Onboard Software
Functions.

the control station interface should be mapped
correctly to a specific function of the onboard
software.

Control Robot Motion

Correctly implement onboard software functions so
that the user can move the robot forward at a
predefined speed and stop the robot using the
control station interface.

Control Camera Motion

Correctly implement onboard software functions so
that the user can pan the camera to the left, and pan
the camera to the right using the control station
interface.

Implement Thread
Management

Correctly manage threads so that the camera and
the robot can function at the same time.

Description Table: Description of Onboard Software Goals

4 Schedule
There was a one-week deadline enforced upon this project. Therefore, it was very important that a
schedule was created for the organization of our work. Our group set out the following schedule plan
for the creation of our onboard software system module. This section also comments on the actual
success/completion of each individually scheduled goal.

4.1 Detailed Milestone Schedule

The following are the milestones we set for our development process. Each separate milestone was
assigned to a group member(s), given a certain deadline date for its completion. The sequence decided
upon was such that milestones be depended on by other milestones were scheduled earlier and milestones
that could be accomplished separately were assigned in parallel—this was looked upon as the most
efficient, logical method of scheduling. Other concerns such as location, resources, etc. were decided by the
member responsible and are not included in this report for the sake of conciseness.

Milestone Explanation Developer Deadline

Server
Connection

A correct implementation of the server that
allows the test tool to send a move
command to be sent by a user and
received by the onboard software.

Emmanuel Smadja Sunday,
March 24

Movement
Response

An untested implementation of the robot
move forward function that would
adequately translate the user command
and control the robot.

Jit Sarkar Sunday,
March 24

Camera
Response

An untested implementation of the camera
left/right turn function that would adequately
translate the user command and control
the robot camera.

Jit Sarkar Sunday,
March 24

Simulator
Response

A successful testing of both robot
movement and camera turning
implementation with the Nomadic
Simulator.

Jit Sarkar Tuesday,
March 26

Robot Response
A successful testing of the robot forward
movement and camera turn
implementation with the Nomadic Scout.

Jit Sarkar Tuesday,
March 26

Module Integration
A working integration of the server and
command implementations with the
Nomadic Scout.

Emmanuel Smadja Tuesday,
March 26

LABORATORY 08 3 JEAH CONTROL SYSTEMS

7/29/2002 CONTROL SYSTEM SPECIFICATION

Final Integration

A successful integration and testing of both
groups’ modules that allows a user to send
commands for forward movement and
camera turning from the interface and
receive an expected response from the
robot.

Jit Sarkar,
Emmanuel Smadja,
Developers of
Group 26

Tuesday,
March 26

Description Table: Schedule of Milestones and Assignment of Responsibility

5 Testing Report
The following explains the actual schedule process that was carried out and the result of the many tests
that were applied. We are happy to indicate that the project was an overall success and that all goals
were completed.

5.1 Post-Development Testing Report

The following table includes information concerning the success/failure of our schedule and any problems
encountered throughout the development process. The problem that was of most concern during the
development process was being refused access to the robot the night of final testing—it greatly increased
the risk of not being able to test/complete the project before deadline (but fortunately did not result as such).

Milestone Problems Encountered Developers Present Date
Completed

Server Connection No major problems
encountered. Emmanuel Smadja Sunday,

March 24

Movement
Response

No major problems
encountered. Jit Sarkar Sunday,

March 24

Camera Response No major problems
encountered. Jit Sarkar Sunday,

March 24

Simulator
Response

No major problems
encountered. Jit Sarkar Tuesday,

March 26

Robot Response Unable to use robot Tuesday
night due to CS216 labs. Jit Sarkar Wednesday,

March 27

Module Integration Unable to use robot Tuesday
night due to CS216 labs. Emmanuel Smadja Wednesday,

March 27

Final Integration
With Client Module

Unable to use robot Tuesday
night due to CS216 labs. Initial
difficulty connecting with robot
interface and finding open
communication ports.

Jit Sarkar, Emmanuel
Smadja, Sean Jellish, Tiffany
Lane, Jennifer Henderson

Wednesday,
March 27

Description Table: Schedule Problems and Completions

6 Source Code
The final implementation of our part of the prototype is included in the following sections in C++.

6.1 Main.cpp
#include "Robot_module.h"
#include "Rmodule.h"
#include <pthread.h>

void *Input_Loop(void *argument);

LABORATORY 08 4 JEAH CONTROL SYSTEMS

7/29/2002 CONTROL SYSTEM SPECIFICATION

int main (int argc, char *argv[]) {

pthread_attr_t attr;
pthread_attr_init(&attr);
pthread_attr_setdetachstate(&attr, PTHREAD_CREATE_JOINABLE);
int status;

pthread_t Input_thread;

Robot_Module Robot(atoi(argv[1]), argv[2], atoi(argv[3]));

Rmodule Receive(&Robot);

cout << endl << "Robot Created" << endl;

pthread_create(&Input_thread, &attr, Input_Loop, (void *) &Robot);

Receive.net_in();

pthread_join(Input_thread, (void **)&status);

exit(0);
}

void *Input_Loop(void *argument) {

Robot_Module *Robot = (Robot_Module *) argument;

char input;

float vel = 0;
 float velChange = 10;

while ((cin >> input)) {

switch (tolower(input)) {
case 'q':

cerr << endl << "quitting..." << endl;
exit(0);
pthread_exit((void *) 0);
break;

case '[':
cerr << endl << "reducing speed.." << endl;
Robot->SetVel(vel += velChange);
break;

case ']':
cerr << endl << "increasing speed.." << endl;
Robot->SetVel(vel -= velChange);
break;

case 's':
vel = 0;
Robot->Stop();
break;

default:
break;

}

}

}

LABORATORY 08 5 JEAH CONTROL SYSTEMS

7/29/2002 CONTROL SYSTEM SPECIFICATION

6.2 Makefile
##
#
CS 340 EXAMPLE MAKEFILE
#
##
#
Everything following a '#' is a comment in a makefile
#

Here we define a macro for the compiler name. This is just in
case we wish to change The compiler at some point in the future

CC = g++

This will be the list of all the flags that have to do with
compiling a C/C++ program. Other possible flags might include
-g for debugging, or -O for optimization

CFLAGS = -fpermissive -I/usr/local/nomad/client

This is the list of all desired linker flags

LFLAGS = -lpthread

The libraries to link into the binaries

LIBS =

just a macro for removing files

RM = /bin/rm -f

The OBJECTS macro is a list of all of the objects that will be
compiled and linked into the binaries. The '\' at the end of a
line indicates that the line should continue on the next text line
without a carriage return

OBJECTS = Robot_module.o Rmodule.o

Likewise, this is a list of all of the BINARIES which this makefile
may generate.

BINARIES = myreal mysim

###

The rest of this makefile consists of make rules. This
one called 'all' tells the make program that 'all'
depends on everything in the BINARIES macro to be
up-to-date

all: $(BINARIES)

Likewise, the clean dependent itself depends on nothing
(i.e. the blank dependency list), but that when the
rule is executed, it should remove all binaries and
objects

clean:
$(RM) $(BINARIES) $(OBJECTS)

The following rule is an example of a rule which creates an object
file. The rule says that connect_sim.o is out of date whenever its

LABORATORY 08 6 JEAH CONTROL SYSTEMS

7/29/2002 CONTROL SYSTEM SPECIFICATION

time stamp does not match that of connect_sim.c. If connect_sim.c
has been edited since the last time connect_sim.o was created, then
the rule should be executed.

Robot_module.o: Robot_module.cpp Robot_module.h
$(CC) $(CFLAGS) Robot_module.cpp -c -o Robot_module.o

Rmodule.o: Rmodule.cpp Rmodule.h
$(CC) $(CFLAGS) Rmodule.cpp -c -o Rmodule.o

This likewise indicates that connect_sim depends on all of the listed
objects to be up to date. If not, it should executed its own rule.
NOTE that if any of the objects have rules them selves which indicate
that they are not up to date, then those rules most first execute and
make will do so for the user.

mysim: main.cpp $(OBJECTS)
$(CC) $(CFLAGS) main.cpp $(OBJECTS) Nclient.o -o mysim $(LFLAGS) $(LIBS)

myreal: main.cpp $(OBJECTS)
$(CC) $(CFLAGS) main.cpp $(OBJECTS) Ndirect.o -o myreal $(LFLAGS) $(LIBS)

6.3 RModule.h
#ifndef _RMODULE_H_
#define _RMODULE_H_

#include <fstream>
#include <queue>
#include <stdio.h>
#include <unistd.h>
#include <signal.h>
#include <errno.h>
#include <netdb.h>
#include <string>

#include <sys/types.h>
#include <sys/socket.h>
#include <sys/param.h>
#include <sys/wait.h>
#include <netinet/in.h>
#include <iostream> // needed for the prototype

#include "Robot_module.h"

// class Rmodule
// Creates The reception module (object) which
// will be used to translate and prioritize messages
// that the communication protocol received from the
// user interface.

class Rmodule
{
public:

// constructor
Rmodule(Robot_Module *robot);

// destructor
//~Rmodule();

//inspectors

// mutators

LABORATORY 08 7 JEAH CONTROL SYSTEMS

7/29/2002 CONTROL SYSTEM SPECIFICATION

//others
// Receives message from the interface
int net_in();
// send a regular command to the robot
void send_bot_cmd(int sock, char *message);
// send an urgent command to the robot
//void send_priority(int cmd);
// defines whether the command is urgent or not
//bool prioritize(int cmd);
// sends event ("message sent", "message received",...) to log
//void send2log(ostream &sout);
// translates int message into robot commands
//string translate(int message);

private:
// queue Rqueue;
// friend class CommProtocol;

Robot_Module *Robot;
};

#endif

6.4 RModule.cpp
// RModule.cpp
#include "Rmodule.h"
// constructor
Rmodule::Rmodule(Robot_Module *robot){

Robot = robot;

}

// destructor
// Rmodule::~Rmodule{}

//inspectors

// mutators

//others
// gets message from interface and sends a regular command to the robot
void Rmodule::send_bot_cmd(int sock, char *message){
 // process communication received over TCP port
 // handle messages
 int MaxVel = 100;
 cout << "the message passed is: " << message[0] << endl;

 int len = strlen(message);

 if (((int) message[0] == 1) && ((int) message[1] == 1)){
 cout << "move robot command received" << endl;
 Robot->SetVel(MaxVel);
 }

 //else if (){
 // cout << "pan camera command received" << endl;
 // robot->camera.pan();
 //}

 else if (((int) message[0] == 1) && ((int) message[1] == 2)){
 cout << "stop command received" << endl;

Robot->Stop();
 }
 //send(sock, message, len, 0);

}
int Rmodule::net_in()

LABORATORY 08 8 JEAH CONTROL SYSTEMS

7/29/2002 CONTROL SYSTEM SPECIFICATION

{

const int MaxBuffer = 1024;
const int ServerPort = 2220; // used to be 8991
char message[MaxBuffer + 1];
int Socket, AcceptedSocket, len;

struct sockaddr_in server;
struct hostent *HostInfo;

//
// Open a socket and start listening for connections
//

memset(&server, 0, sizeof(struct sockaddr_in));
gethostname(message, MaxBuffer);
HostInfo = gethostbyname(message);

if (HostInfo == NULL)
{

perror("could not get hostname");
exit(1);

}

server.sin_family = HostInfo->h_addrtype;
server.sin_port = htons(ServerPort);
Socket = socket(AF_INET, SOCK_STREAM, 0);

if (Socket < 0) {
perror("could not create socket");
exit(1);

}

if (bind(Socket, (struct sockaddr *) &server, sizeof(struct sockaddr_in))
< 0) {
perror("could not bind socket");
exit(1);

}

listen(Socket, 0);

//
// Handle requests one at a time
//

while (1) {
 int size = 3;

AcceptedSocket = accept(Socket, NULL, NULL);

if (AcceptedSocket < 0)
continue;

memset(message, 0, MaxBuffer);
while ((len = read(AcceptedSocket, message, MaxBuffer)) > 0) {

send_bot_cmd(AcceptedSocket, message);
memset(message, 0, MaxBuffer);
send(AcceptedSocket, "YO!", size, 0);

}

close(AcceptedSocket);
}

close(Socket); // This should never be reached
return 0;

}

// send an urgent command to the robot
// void Rmodule::send_priority(int cmd){}
// defines whether the command is urgent or not
// bool Rmodule::prioritize(int cmd){}

LABORATORY 08 9 JEAH CONTROL SYSTEMS

7/29/2002 CONTROL SYSTEM SPECIFICATION

// sends event ("message sent", "message received",...) to log
// void Rmodule::send2log(ostream &sout){}
// translates int message into robot commands
// string Rmodule::translate(int message){}

6.1 RobotModule.h
#ifndef _ROBOT_MODULE_H_
#define _ROBOT_MODULE_H_

#include <stdlib.h>
#include <unistd.h>
#include <stdio.h>
#include <string>
#include <iostream>

#include <pthread.h>
#include <sched.h>
#include <semaphore.h>
#include "Nclient.h"
//#include "CommProtocol.h"
//#include "Camera_module.h"
//#include "Sensors_module.h"

using namespace std;

// Robot Module Class, to provide interface with robot hardware
class Robot_Module {

public:
//______________
// Constructor
Robot_Module(int robot_ID, string address, int port_baud);

// "robot_ID", the number of the robot to connect to
// "address", the location of the robot, either a network

name or a local serial-port
// "port", the port number for the network name, or the baud-

rate for local serial

//_____________
// Destructor
~Robot_Module();

//_________________
// Public members

// Public camera and sensor objects for direct manipulation:
// e.g. Robot.Camera.SetPanAbs(20);

// Camera_Module Camera;
// Sensors_Module Sensors;

//_____________
// Inspectors

// Returns the current velocity of the robot (-100% to +100%)
float GetVel();

// Returns the current acceleration of the robot (-100% to +100%)
// float GetAccel();

// Returns the current rate of turning of the robot (-100% to +100%)
// float GetTurn();

// Returns the user defined maximum velocity (0 to 100%)
// float GetMaxVel();

LABORATORY 08 10 JEAH CONTROL SYSTEMS

7/29/2002 CONTROL SYSTEM SPECIFICATION

// Returns the user defined Maximum acceleration (0 to 100%)
// float GetMaxAccel();

// Returns the user defined Maximum Rate of Turning (0 to 100%)
// float GetMaxTurn();

// Returns the Address of the robot (network or local port)
// string GetNetName();

// Returns the Port Number(for network address) or Baudrate (for local port)
// int GetNetPort();

// Returns the ID number of the robot in use
// int GetNetID();

// Returns the maximum velocity of the robot hardware
// float GetRobot_MaxVel();

// Returns the Maximum acceleration of the robot hardware
// float GetRobot_MaxAccel();

// Returns the Maximum rate of turning of the robot hardware
// Fictitious: robot is a differential motion platform

// float GetRobot_MaxTurn();

// Returns the timeout period set for the robot hardware
// float GetTimeout();

// Returns the Alert Response time interval
// float GetAlertResponseLimit();

//___________
// Mutators

// Sets a new velocity for the robot
int SetVel(float new_Vel); // Returns 1 if successful, otherwise 0

// "new_Vel", the value of the new velocity (-
max_vel to +max_vel)

// Sets a new acceleration for the robot
// int SetAccel(float new_Accel); // Returns 1 if successful, otherwise 0

// "new_Accel", the value of the new velocity (-
max_accel to +max_accel)

// Sets a new turning rate for the robot
// int SetTurn(float new_Turn); // Returns 1 if successful, otherwise 0

// "new_Turn", the value of the new turning
rate (-max_turn to +max_turn)

// Stops all robot motion
int Stop(); // Returns 1 if successful, otherwise 0

// Sets a new maximum allowable velocity for the robot
// int SetMaxVel(float new_max); // Returns 1 if successful, otherwise 0

// "new_max", the value of the new maximum (0 to +100%)

// Sets a new maximum allowable Acceleration
// int SetMaxAccel(float new_max); // Returns 1 if successful, otherwise 0

// "new_max", the value of the new maximum (0 to +100%)

// Sets a new maximum allowable rate of turning
// int SetMaxTurn(float new_max); // Returns 1 if successful, otherwise 0

// "new_max", the value of the new maximum (-100% to +100%)

// Sets a new timeout period for the robot
int SetTimeout(float new_time); // Returns 1 if successful, otherwise 0
// "new_time", the value of the new timeout period (0s to Robot_max_timeout)

// Triggers an alert (e.g. because a bump switch was tripped):

LABORATORY 08 11 JEAH CONTROL SYSTEMS

7/29/2002 CONTROL SYSTEM SPECIFICATION

// Stops all robot motion, sends message to communications system and
sets //the alert flag

// int SetAlert(); // Returns 1 if successful, otherwise 0

// Sets the alert acknowledged flag, indicating that the user is aware of the
//problem

// int AcknowledgeAlert(); // Returns 1 if successful, otherwise 0

// Clears the alert flag, allowing normal operation to continue
// int ClearAlert(); // Returns 1 if successful, otherwise 0

// Sets a new Alert Response time interval
// int SetAlertResponseLimit(float new_limit);
// Returns 1 if successful, otherwise 0
// "new_limit", the new time window in which to address an alert issue

private:

//__________________
// Private members

// Robot Hardware specific constants
// the maximum allowed velocity, as defined by the robot hardware
const int Robot_max_vel = 400;

// the maximum allowed accelerations, as defined by the robot hardware
const int Robot_max_accel = 390;

// the maximum allowed rate of turning for the robot, fictitious
// robot has no inherent steering system, it is a differential platform
const int Robot_max_turn = 100;

// the frequency at which commands are sent to the robot hardware
const int Refresh_rate = 100; // in miliseconds

// the maximum allowed timeout period, as defined by the robot hardware
const int Robot_max_timeout = 255;

// pointer to the communications system object
// Comm_Protocol *Server;

// defines the robots stopped mode
// bool Stopped;

// the address of the robot, either a network location, or a local port
string Net_Name;

// the port number of the robot(for network), or baud rate(for local port)
int Net_Port;

// the ID number of the robot being used
int Net_ID;

// the alert flag, set when a problem occurs
// bool Alert;

// the alert acknowledged flag is set to indicat that the operator is aware
of the problem

// bool Alert_Acknowledged;

// the time period after acknowledgment is received in which robot motion is
permitted
// in order to correct the alert

// float Alert_Response_Limit;

// the currently set velocity of the robot (-max_vel to +max_vel)
float current_vel;

LABORATORY 08 12 JEAH CONTROL SYSTEMS

7/29/2002 CONTROL SYSTEM SPECIFICATION

// the currently set acceleration of the robot (-max_accel to +max_accel)
float current_accel;

// the currently set rate of turning for the robot (-max_turn to +max_turn)
// float current_turn;

// the user defined maximum veloctiy of the robot (0 to 100%)
float max_vel;

// the user defined maximum accleration of the robot (0 to 100%)
float max_accel;

// the user defined maximum veloctiy of the robot (0 to 100%)
// float max_turn;

// the timeout period for the robot, the maximum allowed gap between commands
issued
// to the hardware, before the robot stops itself (0s to Robot_max_timeout)
float Robot_timeout;

// Mutexes
struct timespec delay;

pthread_attr_t attr;

pthread_t Control_thread;

pthread_mutex_t Control_Lock;

float left_wheel;
float right_wheel;

//_______________
// Private member functions

// private control loop thread that resends commands to the robot hardware
// every (Refresh_rate)
void *Control_Loop(void *not_used);

};

#endif

6.2 RobotModule.cpp
#include "Robot_module.h"

Robot_Module::Robot_Module(int robot_ID, string address, int port_baud) {

Net_Name = address;
Net_ID = robot_ID;
Net_Port = port_baud;

strcpy (SERVER_MACHINE_NAME, Net_Name.data());
 SERV_TCP_PORT = port_baud;

connect_robot(Net_ID, MODEL_SCOUT, Net_Name.data(), Net_Port);

current_vel = 0;
current_accel = 100;

max_vel = 100;
max_accel = 100;

delay.tv_sec = 1;

LABORATORY 08 13 JEAH CONTROL SYSTEMS

7/29/2002 CONTROL SYSTEM SPECIFICATION

delay.tv_nsec = 0;

left_wheel = 0;
right_wheel = 0;

pthread_mutex_init (&Control_Lock, NULL);

SetTimeout(2);

pthread_attr_init(&attr);
pthread_attr_setdetachstate(&attr, PTHREAD_CREATE_JOINABLE);

// pthread_create(&Control_thread, &attr, Control_Loop, (void *) &max_vel);

}

Robot_Module::~Robot_Module() {

pthread_mutex_lock(&Control_Lock);
pthread_cancel(Control_thread);
pthread_mutex_destroy(&Control_Lock);

disconnect_robot(Net_ID);

}

float Robot_Module::GetVel() {

return current_vel;
}

int Robot_Module::SetVel(float new_Vel) {
 int float_max_vel;

pthread_mutex_lock(&Control_Lock);

if (new_Vel > max_vel) new_Vel = max_vel;
if (new_Vel < -max_vel) new_Vel = -max_vel;

current_vel = new_Vel;

left_wheel = (current_vel/float_max_vel) * Robot_max_vel;
right_wheel = (current_vel/float_max_vel) * Robot_max_vel;
vm(left_wheel, right_wheel, 0);

cout << endl << "New Velocity is: " << current_vel << endl;

pthread_mutex_unlock(&Control_Lock);

return 1;

}

int Robot_Module::Stop() {
int stop_vel = 0;
pthread_mutex_lock(&Control_Lock);

cout << endl << "Stopping...";
st();

current_vel = stop_vel;

pthread_mutex_unlock(&Control_Lock);

return 1;
}

int Robot_Module::SetTimeout(float new_time) {

LABORATORY 08 14 JEAH CONTROL SYSTEMS

7/29/2002 CONTROL SYSTEM SPECIFICATION

float timeout_vel = 2.0;
pthread_mutex_lock(&Control_Lock);

if (new_time < 0) new_time = 1;
else if (new_time > Robot_max_timeout) new_time = Robot_max_timeout;

Robot_timeout = new_time;

delay.tv_sec = (Robot_timeout / timeout_vel);
delay.tv_nsec = (Robot_timeout / timeout_vel - delay.tv_sec) * 1000000000;

conf_tm(Robot_timeout);

pthread_mutex_unlock(&Control_Lock);

return 1;

}

void *Robot_Module::Control_Loop(void *not_used) {

char talk[] = "Moving";
float left_wheel = 0;
float right_wheel = 0;
float maxvel = 100.0;

while(1) {

pthread_mutex_lock(&Control_Lock);

left_wheel = (current_vel/maxvel) * Robot_max_vel;
right_wheel = (current_vel/maxvel) * Robot_max_vel;
vm(left_wheel, right_wheel, 0);
tk(talk);

pthread_mutex_unlock(&Control_Lock);
sleep(2);

}

}

LABORATORY 08 15 JEAH CONTROL SYSTEMS

7/29/2002 CONTROL SYSTEM SPECIFICATION

7 Approval Sheet

This Document was produced, and approved by, the following
members of the Jeah Control Systems Group:

Member Name Member Signature

8 Hao Liang

9 Abraham Castro Lleva

10 Bikramjit Sarkar

11 Emmanuel Jeremy Smadja

LABORATORY 08 16 JEAH CONTROL SYSTEMS

7/29/2002 CONTROL SYSTEM SPECIFICATION

12 Pledge Sheet

“On my honor as a student of the University of Virginia, I have neither
given, nor received any unauthorized aid on this assignment.”

Member Name Member Signature

13 Hao Liang

14 Abraham Castro Lleva

15 Bikramjit Sarkar

16 Emmanuel Jeremy Smadja

LABORATORY 08 17 JEAH CONTROL SYSTEMS

	2 Preface
	3 Prototype Goals
	3.1 System Goal
	3.2 Onboard Software Goals

	4 Schedule
	4.1 Detailed Milestone Schedule

	5 Testing Report
	5.1 Post-Development Testing Report

	6 Source Code
	6.1 Main.cpp
	6.2 Makefile
	6.3 RModule.h
	6.4 RModule.cpp
	6.1 RobotModule.h
	6.2 RobotModule.cpp

	7 Approval Sheet
	12 Pledge Sheet

